- 빅데이터/인공지능
- Data Science Workflow: Overview and Challenges
- SK이노베이션, 업계 첫 '스마트 플랜트' 도입
- '스마트'해야 살아남는다…탈바꿈하는 철강업계
- (Tesla) Full Self-Driving Hardware on All Cars
- DeepMind Open Source Datasets
- Google releases new TensorFlow Object Detection API
- [Start-up] 구글의 알파고 뛰어넘는 새로운 인공지능 만든다
- 알파고 채용한 현대제철, '꿈의 자동차 강판' 뽑아냈다
- Deep Learning AMI, AWS 서울 리전 출시
- MNIST FOR ML BEGINNERS: THE BAYESIAN WAY
- Scaling Machine Learning to Modern Demands
- Benchmarking CNTK on Keras: is it Better at Deep Learning than TensorFlow?
- ImageNet: VGGNet, ResNet, Inception, and Xception with Keras
- This guide should help fellow researchers and hobbyists to easily automate and accelerate there deep leaning training with their own Kubernetes GPU cluster.
- DLTK is a neural networks toolkit written in python, on top of Tensorflow.
- The Automation Paradox
- "더 빠르고, 더 간편하게" 딥 러닝의 미래
- 딥러닝 기반 기상 예측 모델 연구 사례 (1) : Convolutional LSTM
- guild.ai - Real time TensorFlow™ visualization
- “데이터 입력, 지능 출력” 알기 쉽게 설명하는 머신러닝 파이프라인
- 유영민 미래부 “실체 있는 4차 산업혁명 만들겠다”
- Can Neural Networks Crack Sudoku?
- Top 20 Python Machine Learning Open Source Projects, updated
- ENGINEERING EXTREME EVENT FORECASTING AT UBER WITH RECURRENT NEURAL NETWORKS
- DeepMind Shows AI Has Trouble Seeing Homer Simpson's Actions
- Microsoft Machine Learning for Apache Spark
- Six Points On The Map Of Emerging Tech
- '더 쉽고 빠르게' 딥러닝의 다음 행보는?
- Generative Adversarial Networks for Beginners
- [A.I. Plus] 우리나라 A.I. 기업 현황 조사 보고서 Ver 1.0
- 머신러닝 시스템 프로세스와 아키텍쳐
- Exploring LSTMs
- 텐서플로우를 기초부터 응용까지 단계별로 연습할 수 있는 소스 코드를 제공합니다
- '인더스트리 4.0을 향해' 산업용 IoT에 필요한 5가지 기술력
- RNN을 이용한 한글 자동 띄어쓰기
- Google Brain Residency
- AI will be able to beat us at everything by 2060, say experts
- Audi is the first to test autonomous vehicles in New York
- (한글 번역) Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN)
- Tuning Your DBMS Automatically with Machine Learning
- Q&A with Greg Kurtzer from the GPU Technology Conference
- Singularity containers let users run applications in a Linux environment of their choosing.
- An Introduction to the CAN Bus: How to Programmatically Control a Car
- The End of Human Doctors – The Bleeding Edge of Medical AI Research (Part 2)
- You can probably use deep learning even if your data isn't that big
- Experts Predict When Artificial Intelligence Will Exceed Human Performance
- Using Stanford CoreNLP from the command line
- 3Blue1Brown: 멋진 수학 채널(유튜브)
- Alphabet’s Waymo begins testing self-driving trucks
- Easily visualize cnn layer activations and filters on tensorboard.
- What Intelligent Machines Need to Learn From the Neocortex
- DeepFix: Fixing Common C Language Errors by Deep Learning
- 읽을거리
- If you can’t explain something in simple terms, you don’t understand it
- The purpose of life is to be a nobody
- 회사를 떠나는 것이 아니다. 상사를 떠나는 것이다.
- Modifying Microsoft Flight Simulator 4 to run on three immersive monitors
- The lost genius of the Post Office
- ‘신뢰가 모자랍니다’
- Why You Can’t Help But Act Your Age - The surprising relationship between mindset and getting old.
- A Mathematician's Secret: We're Not All Geniuses
- 서경배의 성공을 부른 습관 3가지
- 잔디밭 밟는 것 막고 싶다고? 한가운데 길을 내라
- [36.5] 시간 빈곤자들의 도시
- How highly advanced hackers (ab)used satellites to stay under the radar
- How not to build a ship: the USS Ford
- Cache: A Place for Concealment and Safekeeping
- "매일 10분이라도 글 써야 생각을 하게 돼"
- [만물상] "써야 생각한다"
- 이직에 대한 단상
- 블록체인은 성능이 개판인가?
- The IBM PC, Part 1
- Unlimited Horizons: Design and Development of the U-2
- Popular People Live Longer
- [카드뉴스] 세계 최대 방산업체가 만든 비행 시뮬레이션 게임
- John Grisham’s Do’s and Don’ts for Writing Popular Fiction
토요일, 6월 17, 2017
[B급 프로그래머] 6월 2주 소식(빅데이터/인공지능, 읽을거리 부문)
(오늘의 짤방: 프로그래머가 보는 반이 찬 물잔 @InfoQ)
피드 구독하기:
댓글 (Atom)
댓글 없음:
댓글 쓰기